Review of “Adaptive Optics for Biological Imaging” edited by Joel A. Kubby
نویسنده
چکیده
Book review Background Optical imaging systems, such as microscopes or telescopes, aim to provide as crisp and detailed a view as possible. Unfortunately, most devices do not achieve their full optical power due to aberrations that are introduced by the imaging system itself (e.g., the chromatic aberration introduced by a simple lens), in the object to be imaged (e.g., extensive scattering within individual cells), or in the intervening medium (e.g., atmospheric turbulence when imaging astronomical objects). As a result of these aberrations, the incoming wavefronts are distorted, resulting in blurred images. In the case of microscopy, aberrations result in reduced resolution both laterally and axially. In some cases, the aberrations are modest and simple to correct for with static optical elements. However, in most cases, the aberrations are strong, complex in nature, and/or highly dynamical and the loss in image quality incurred can be both dramatic and variable. Aberrations are so common that they have indeed limited the effective resolving power of microscopes and telescopes for centuries. A variety of remedial methods have been proposed against aberrations but none is as versatile and powerful as adaptive optics (AO) systems. These systems aim at actively controlling and correcting for aberrations, enabling normal imaging systems to reach their nominal power. The key element of an AO system is a “deformable mirror” that can be controlled to compensate the aberrations induced on the incoming wavefronts. The challenges of building an AO system are extremely serious. While the concept was introduced in the astronomical context over 60 years ago, the first on-sky partial experiments awaited the late 1970s and the first full operating system the late 1980s. Nowadays, AO is a mainstream part of modern astronomy: all existing and planned state-of-the-art telescopes have such a device and low-cost versions are being commercialized for small telescopes.
منابع مشابه
A three-photon microscope with adaptive optics for deep-tissue in vivo structural and functional brain imaging
We developed a three-photon adaptive optics add-on to a commercial two-photon laser scanning microscope. We demonstrated its capability for structural and functional imaging of neurons labeled with genetically encoded red fluorescent proteins or calcium indicators deep in the living mouse brain with cellular and subcellular resolution.
متن کاملAdaptive optics wide-field microscopy using direct wavefront sensing.
We report a technique for measuring and correcting the wavefront aberrations introduced by a biological sample using a Shack-Hartmann wavefront sensor, a fluorescent reference source, and a deformable mirror. The reference source and sample fluorescence are at different wavelengths to separate wavefront measurement and sample imaging. The measurement and correction at one wavelength improves th...
متن کاملThree-dimensional focusing through scattering media using conjugate adaptive optics with remote focusing (CAORF).
The small correction volume for conventional wavefront shaping methods limits their application in biological imaging through scattering media. We demonstrate large volume wavefront shaping through a scattering layer with a single correction by conjugate adaptive optics and remote focusing (CAORF). The remote focusing module can maintain the conjugation between the adaptive optical (AO) element...
متن کاملAdaptive Optics Confocal Fluorescence Microscopy with Direct Wavefront Sensing for Brain Tissue Imaging
Recently, there has been a growing interest in deep tissue imaging for the study of neurons. Unfortunately, because of the inhomogeneous refractive index of the tissue, the aberrations degrade the resolution and brightness of the final image. In this paper, we describe an adaptive optics confocal fluorescence microscope (AOCFM) which can correct aberrations based on direct wavefront measurement...
متن کاملLive imaging using adaptive optics with fluorescent protein guide-stars
Spatially and temporally dependent optical aberrations induced by the inhomogeneous refractive index of live samples limit the resolution of live dynamic imaging. We introduce an adaptive optical microscope with a direct wavefront sensing method using a Shack-Hartmann wavefront sensor and fluorescent protein guide-stars for live imaging. The results of imaging Drosophila embryos demonstrate its...
متن کامل